
Bourbaki Proof Checker

Juha Arpiainen

October 20, 2005

1

Contents

1 Introduction 3
1.1 Quick start . 3

2 Symbols 4

3 Expressions 4
3.1 Functions related to symtrees 5

4 Theorems 5
4.1 Theorem syntax . 6

4.1.1 th . 6
4.1.2 hypo . 7
4.1.3 ass . 7
4.1.4 proof . 7

4.2 Axioms . 7
4.3 Verification . 8
4.4 Distinct Variables . 8

5 Definitions 9
5.1 Free and Bound Symbols . 10
5.2 Sample Definitions . 11

6 Contexts 11
6.1 Nested Contexts . 12

6.1.1 Nested Variables . 13
6.2 Theories . 14
6.3 Importing and Exporting . 15
6.4 Loading Files . 16

7 Metatheorems 17
7.1 Copying Theorems . 17
7.2 Pattern matching . 17
7.3 The metatheorem macro . 18
7.4 Possibilities . 19

8 The Bourbaki Library 19

2

1 Introduction

Bourbaki is a program for writing and verifying formal mathematical proofs.
It is mainly based on Norman Megill’s Metamath, but aims on providing more
powerful syntax and tools for automating proof writing. Performance is not
a design goal, at least as long as writing proofs takes longer than verifying
them.

Nicolas Bourbaki is the pseudonym of a group of mathematicians, who
have written a rigorous multi-volume treatise of Mathematics based on set
theory. My long term goal with Bourbaki is likewise a rigorous on-line
computer-verified dictionary of Mathematics.

The current version 3.5 is implemented as an embedded language on top
of ANSI Common Lisp (the version numbering starts from 3 in memory of
the time wasted in two unsuccesful C++ versions). This means most of Lisp
features are available for the user, in particular it is possible to write Lisp
functions that construct proofs (See section 7).

1.1 Quick start

$ gunzip bourbaki.tar.gz

$ tar xvf bourbaki.tar

Bourbaki uses UTF-8 encoding

Substitute clisp with your favourite Common Lisp implementation

$ LC_ALL=en_US.utf8 clisp

> (load "init")

> (in-package bourbaki-user)

;; load file "logic.lisp" and verify all theorems

;; defined there

> (verify !!logic)

;; show theorem "id"

> (print-theorem !logic!id)

3

2 Symbols

Mathematical expressions in Bourbaki are trees of symbols written like Lisp
s-expressions. Thus we write [→ [∧ φ ψ] χ] instead of (φ ∧ ψ) → χ.
As all symbols in Bourbaki have a definite number of arguments, the inner
parentheses in the first expression are redundant; it is equal to [→ ∧ φ ψ χ].

Each symbol in Bourbaki has a name, a type and a list of argument types.
Primitive symbols can be defined with macro ‘prim’:

;; ASCII tokens are used here instead of the actual

;; Unicode mathematical symbols in prop.lisp

;; Symbol "->" is of type pr and has two arguments

;; of type pr

(prim pr "->" pr pr)

(prim pr "\forall" sv pr)

Here pr (for ‘proposition’ or ‘predicate’) is a symbol type defined with
‘make-bsymtype’:

(setq pr (make-bsymtype :eq-op nil :is-bound nil :super nil))

A symbol type can be defined as a subtype of another type by giving
the :super argument to make-bsymtype. For the other arguments of make-
bsymtype, see section 5. Usually one symbol type (‘pr’ in the Bourbaki
Libary) would correspond to the logical statements of the formal system.

The symbols are stored in a namespace (actually a hierarchy of names-
paces, see section 6) separate from the Lisp package system. Symbol types
on the other hand are stored as values of normal Lisp symbols. The name of
a symbol may contain any Unicode characters.

3 Expressions

An expression, or symtree T is stored internally as a list of the form (op tree1 tree2 . . . treen)
where op is a symbol (the operator of the tree) and each treei is a symtree
(n = 0 for the leaves of the tree). The type of T is the type of op.

The tree is well-formed if the number of arguments of op is n and each
treei is a well-formed tree whose type is a subtype of the corresponding ar-
gument type of op.

4

3.1 Functions related to symtrees

The type of a symbol or symtree can be found with the function ‘wff-type’.
Well-formedness of a symtree can be tested with the function ‘proper-wff-p’
(function ‘wffp’ returns also true for the empty list). The equality of two
symtrees can be tested with the function ‘wff-equal’. (The word wff for ‘well
formed formula’ is normally used only for well-formed symtrees with type
‘pr’. proper-wff-p tests symtrees of any type, however).

Symtrees are normally created with the [] syntax: [→ φ ψ] returns
the tree (imp (psi) (phi)), where imp, phi and psi are the Lisp objects
corresponding to symbols →, φ and ψ. In this document the [] syntax
is sometimes used to represent the actual tree although this is not exactly
correct. The tree might also be shown as (→ (ψ) (φ)). Note that the
arguments are internally stored in reversed order for technical reasons.

[is actually a reader macro that gets converted to a call to ‘symstr-parse’.
symstr-parse would normally not be called directly.

It is often necessary to substitute certain symbols in a symtree with other
symtrees. For example, substituting [ψ] for φ and [→ φ φ] for ψ in [→ φ →
ψ φ] results in [→ ψ → → φ φ ψ]. The Common Lisp function ‘sublis’
almost does this: The result would be (→ (→ ((ψ)) ((→ φ φ))) ((ψ)))
with extraneous pairs of parenthesis. The function ‘replace-vars-canonize’ is
a wrapper around sublis that makes the result well-formed. It is called with
two arguments: the original symtree and a list of pairs (symi . substi) of
substitutions.

Symtrees are printed with the function ‘print-symtree’. Its operation
depends on value of the variable *bourbaki-debug*. If set to true, the internal
list structure is printed, otherwise the [] format is used. print-symtree also
takes an optional boolean argument ‘paren’ (default value nil). Using this
when not in debug mode results in additional parentheses being printed for
clarity.

4 Theorems

Theorems in bourbaki have zero or more variables (or arguments), an as-
sertion, zero or more hypotheses and a proof. The theorem is treated as
a transformation rule: when its hypotheses are satisfied for some symtrees
substituted for its variables, its (correspondingly substituted) assertion can

5

be used to prove other theorems.
Theorems are created with the macros ‘th’, ‘ass’, ‘hypo’ and ‘proof’. Ex-

ample corresponding to Metamath theorem ”id1”:

;; Theorem "id" has one variable of type pr

(th "id" (pr "phi")

(hypo) ; No hypotheses, this line could be omitted

(ass [-> phi phi])

(proof

[ax1 [phi] [phi]] ; or equally [ax1 phi phi]

[ax1 [phi] [-> phi phi]]

[ax2 [phi] [-> phi phi] [phi]]

[ax-mp [-> phi -> -> phi phi phi]

[-> -> phi -> phi phi -> phi phi]]

[ax-mp [-> phi -> phi phi] [-> phi phi]]))

Theorems share the same namespace with symbols, there cannot be a
symbol ”id” and a theorem ”id” at the same time. The proof contains
theorem references (that have same syntax as symtrees) with explicit sub-
stitutions for the referred theorems’ variables, as opposed to the implicit
substitutions Metamath uses.

Theorems can be printed with the function ‘print-theorem’

4.1 Theorem syntax

Syntax for the macros ‘th’, ‘ass’, ‘hypo’ and ‘proof’ follows.

4.1.1 th

theorem-form := (th name var-spec lisp-form*)

name := string

var-spec := ({ type var-names }*)

type := lisp-form

var-names := string | (string*)

Multiple variables of same type can be declared as type (”var1” ”var2” . . . ”varn”)
instead of type ”var1” type”var2” . . . type ”varn”. Evaluating each type
should result in an object of type ‘bsymtype’.

6

4.1.2 hypo

hypothesis-form := (hypo symtree*)

Multiple hypothesis forms may be used; the order does not matter.

4.1.3 ass

assertion-form := (ass symtree)

Each use of ‘ass’ replaces the previous assertion. The type of each hy-
pothesis and assertion would normally be ‘pr’; however, Bourbaki allows any
type to be used. If all the axioms have assertions of type ‘pr’, theorems of
no other type can be verified.

4.1.4 proof

proof-form := (proof symtree*)

The operator of each proof line should be an already proved theorem, an
axiom or a definition (see section DEF).

Using multiple proof forms has somewhat unexpected results: New lines
are added at the beginning of the proof.

(proof A B C)

(proof D E F)

has the same effect as

(proof D E F A B C)

The relative order of hypo-, ass- and proof-forms does not matter.

4.2 Axioms

Axioms are defined similarly, but using ‘ax’ instead of ‘th’. Bourbaki allows
using ‘proof’ for axioms even though having a proof for an axiom does not
make much sense.

7

4.3 Verification

The function ‘verify’ checks the correctness of a theorem or an axiom. The
verification algorithm for a theorem thr is as follows:

1. Check that the hypotheses and assertion of thr are well-formed.

2. Initialize list L with the hypotheses of thr.

3. For each proof line [ref subst1 . . . substn],

• Verify ref if it is not already verified.

• Check that the number of variables of ref is equal to the number n
of substitutions, and that each substi is well-formed and of correct
type.

• For each hypothesis h of ref , check that
(replace-vars-canonize h ((var1 . subst1) . . .)) is in L.

• Insert (replace-vars-canonize a ((var1 . subst1) . . .)) into L, where
a is the assertion of ref .

4. Check that the result of the last proof line is equal to the assertion of
thr.

The relative order of independent proof lines does not matter. For ex-
ample, the first three lines of the proof of ”id” could have been in any other
order.

4.4 Distinct Variables

Distinct variable conditions are introduced with the macro ‘dist’. This is
equivalent to Metamath’s $d feature, see the Metamath book[1] for details.
Distinct variable syntax:

distinct-variable-form := (dist condition*)

condition := (symbol*)

8

5 Definitions

New symbols can be defined in terms of primitive (or already defined) sym-
bols with the ‘def’ macro. The soundness of Bourbaki definitions is carefully
checked. A symbol s introduced with the sound definition d can be elim-
inated, that is, each wff containing s can be proved, using only def , other
sound definitions, and axioms, to be equivalent with a wff containing only
primitive symbols. Also, each theorem thr whose proof uses def , could be
proved without using def , provided that s does not occur in the hypotheses
or the assertion of thr.

def allows a limited kind of definitions, whose soundness can be proved.
The syntax for definitions is as follows:

definition-form := (def def-name sym-type sym-name sym-vars dummy-vars rhs)

def-name := string

sym-type := lisp-form

sym-name := string

sym-vars := var-spec

dummy-vars := var-spec

rhs := symtree

A definition (def ”df-sym” t0 ”sym” (t1 ”var1” . . .) (u1 ”dummy1” . . .)
rhs) is equivalent with

(prim t_0 "sym" t_1 ... t_n)

(ax "df-sym" (t_1 "var_1" ... t_n "var_n" u_1 "dummy_1" ... u_m "dummy_m")

(ass [eq [sym t_1 ... t_n] rhs])),

provided it satisfies the soundness test. Here ‘eq’ is the equality operator
for type t0. eq should be an equivalence relation and have the substitu-
tion property for objects of type t0: Each wff of the form [→ [eq x y] [↔
φ(x) φ(y)]] should be provable. These properties are not checked by Bour-
baki; using a bad equality operator will lead to incorrect definitions.

The equality operator of a type can be set with (setf (bsymtype-eq-op
t0) eq). Note that the equality operator ”↔” for type ‘pr’ cannot be defined
with def. The equivalent of Metamath df-bi must be an axiom in Bourbaki.

9

5.1 Free and Bound Symbols

In addition to the variables ”vari” the right-hand side of a definition may
contain dummy variables (the dummyi). These must only occur bound on
the rhs.

In Bourbaki a symbol type may be declared bound with the :is-bound
argument to make-bsymtype. A symbol with bound argument types is said to
bind the corresponding arguments in a symtree. That is, if the first argument
type of op is bound, any occurrence of x in [op x φ ψ . . .] is bound (here φ,
ψ, . . . are arbitrary symtrees). Any occurrence not bound is called free.

The only bound symbol type in the Bourbaki Library is ‘sv’ (for ‘set
variable’). The Universal Quantifier ∀ declared in Section 2 binds its first
argument.

Having free variables on the rhs would lead to contradiction. Suppose for
example

(def "df-foo" sv "foo" () (sv "x")

[x])

Then, using [df-foo x], [df-foo y] and transitivity of set equality, one could
prove [= x y] for any set variables x, y. Axioms for primitive symbols with
bound arguments must be checked carefully. For example,

(prim sv "bar" sv)

(ax "ax-bar" (sv "x")

(ass [= bar x x]))

(def "df-foo" sv "foo" () (sv "x")

[bar x])

leads to same problem even though x is now bound on the rhs. Also, any
subtype of a bound symbol type should be bound.

(Question: are there any easily checkable and sufficiently general condi-
tions for axioms with bound symbols that can be used with sound defini-
tions?).

10

5.2 Sample Definitions

;; The logical disjunction

(def "df-or" pr "\/" (pr ("phi" "psi")) ()

[-> not phi psi])

;; Existential Quantifier

(def "df-ex" pr "Ex" (sv "x" pr "phi") ()

[not All x not phi])

;; The class of all sets

;; The class abstraction operator [{ x phi] binds x

(def "df-V" cl "V" () (sv "x")

[{ x = x x])

6 Contexts

For larger projects it gets inconvenient to have all theorems and symbols in
the same namespace. Bourbaki provides a hierarchy of namespaces, called
contexts, to place related symbols and theorems in. At the top of the hierar-
chy is a single root context, the value of *root-context*.

A context is defined with the macro ‘in-context’. Example:

(in-context "logic"

(prim pr "->" pr pr)

;; Modus ponens

(ax "ax-mp" (pr ("phi" "psi"))

(hypo [phi] [!!logic!-> phi psi])

(ass [psi])))

(in-context "set-theory"

(ax "ax-infinity" ...)

...)

11

The symbol → is defined in context !!logic and can be referred to as
”!!logic!→” from everywhere. Here the double ‘!’ is an absolute reference,
based on the root context. Inside context ”logic” !→ or → is enough (one
‘!’ for relative reference; a single ‘!’ in the beginning of a reference can be
omitted inside a [] -format symtree).

The ‘!’ syntax works outside symtrees also, !!set-theory!ax-infinity returns
the Lisp object that can be passed to ‘verify’ or ‘print-theorem’.

Like ‘[’, ‘!’ is a reader macro that is converted to a call to the function
‘seek-sym’.

6.1 Nested Contexts

Contexts can be nested up to any level. For example,

(in-context "foo"

(in-context "bar"

(prim pr "bar-sym"))

(th "foo-thr" ()

(ass [!bar!bar-sym ...])

...))

(th "other-thr" ()

(ass [!foo!bar!bar-sym ...]) ; or [!!for!bar!...]

...)

In fact, corresponding to each theorem (and axiom) a context with the
same name is created (or actually, the theorem is also the context). It is
thus possible to write

(in-context "ctx"

(th "thm" (pr "phi" pr "psi")

(th "lemma" ...)

...

12

(proof

[lemma phi psi]

...)))

and the complete name of ”lemma” is ”!!ctx!thm!lemma”. The ‘in-context’
can be used several times with the same context, probably in different files.
The context is created if it did not already exist. (It is also possible, though
not recommended, to ‘re-open’ a theorem context with in-context:

(th "foo" (pr ("phi" "psi")) ...)

(in-context "foo"

;; add a hypothesis to "foo"

(hypo [-> phi psi]))).

A theorem’s variables (and dummy variables) reside in the theorem con-
text, but can not be accessed from outside, ”!!foo!φ” in the previous example
would not make sense when there is no wff substituted for φ. Attempting to
make such a reference results in an error message.

6.1.1 Nested Variables

What about trying to use a lemma or a locally defined symbol from outside
the containing theorem? In

(th "foo" (pr ("phi" "psi"))

(def "df-mysym" pr "my-sym" () ()

[-> phi psi])

(th "lemma" (pr "chi")

(ass [<-> phi /\ psi chi])))

the value of ”my-var” and the assertion of ”lemma” depend on the argu-
ments supplied to ”foo”. Therefore, when used from outside ”foo”, we must
supply arguments to ”foo” also:

(th "bar" (pr ("x" "y" "z")) ...

;; Use lemma from "foo"

13

(proof

[!!foo!lemma x y z] ; inserts [<-> x /\ y z] to proof list

;; Logically equivalent to [ax-mp [-> x y] [z]]

[!!logic!ax-mp [!!foo!my-sym x y] [z]]

...))

Trying to use simply ”!!foo!lemma” would result in a parse error. Note
that the hypotheses for ”foo” (if any) must also be satisfied if ”lemma” is
used this way. There can be multiple levels of nested theorems; arguments
for each level must be supplied when accessed from outside.

6.2 Theories

The macro ‘theory’ defines a context with variables and hypotheses, with
same access rules as theorems. Instead of writing

(in-context "topology"

(th "th1" (set "X")

(hypo [topological-space X])

....)

(th "th2" (set "X")

(hypo [topological-space X])

...)

...)

one can write

(theory "topology" (set "X")

(hypo [topological-space X])

(th "th1" () ...)

(th "th2" () ...))

to the same effect. In the latter case the symbol ”topological-space”
must be defined outside context ”topology”. The syntax of ‘theory’ is the
same as that of ‘th’ except that an assertion or a proof makes no sense for a
theory (again, these are not banned by Bourbaki). The theory context can
be re-opened with ‘in-context’.

14

6.3 Importing and Exporting

It gets tedious to write ”!!logic!ax-mp” all the time. To solve this problem,
Bourbaki allows importing symbols and theorems from other contexts. Ac-
tually, importing gives more, ”default substitutes” can be provided for some
of the variables. An example:

;; Theory of topological spaces

(theory "topology" (set "X")

(hypo [topological-space X])

;; The closure of A with respect to the topology of X

(def "df-closure" set "closure" (set "A") ...)

(th "th1" ())

...)

;; Theory of metric spaces

(theory "metric" (set "d")

(hypo [metric-space X])

;; Make all symbols and theorems from "topology" available.

;; The name ‘import’ is reserved by Lisp.

(bimport [!!topology [metric-topology d]])

(th "metric-th" (set "A") ...

;; Same as [... !!topology!closure [metric-topology d] A ...]

(ass [... closure A ...])

(proof

;; Same as [!!topology!th1 metric-topology d]

;; The hypothesis [topological-space metric-topology d]

;; must still be (explicitly) satisfied

[th1])))

In the previous example, trying to use ”!!metric!closure” won’t work:
The symbol ‘closure’ is still defined in ”topology” and only accessible with
a shorthand in ”metric”. If instead of ‘bimport’, ‘bexport’ were used, the
effect would be (almost) the same as if copies of theorems and symbols were
written in ”metric”:

15

(theory "metric" (set "d")

(bexport [!!topology [metric-topology d]])

...)

(th "some-thr" ()

(ass [... !!metric!closure my-metric ...])

...)

There is still only one symbol ‘closure’ and the following symtrees are
equal (in the sense of ‘wff-equal’):

[!!metric!closure my-metric A]

[!!topology!closure [metric-topology my-metric] A]

Exporting is transitive:

(theory "topology" (set "X")

(def "df-clos" set "clos" set))

(theory "metric" (set "d")

(bexport [!!topology [m-topology d]]))

(theory "banach" (set "B")

(bexport [!!metric [B-metric B]]))

;; Same as [!!topology!clos [m-topology B-metric B] my-B-space]

[!!banach!clos my-B-space]

6.4 Loading Files

If an absolute reference (as in ”!!logic!id”) is made to a non-existent context,
Bourbaki tries to load a corresponding file (”logic.lisp”) from the directory
specified by *bourbaki-library-path* (default value ”lib” relative to the work-
ing directory of Bourbaki) before seeking the symbol again. Additional files
may be loaded with the function ‘bload’.

In the following example, the file ”prop.lisp” could be loaded in an another
context and a different symbol type (perhaps to prove theorems in Boolean
algebras with the same form):

16

;;;; logic.lisp

(setq pr (make-bsymtype))

(in-context "logic"

(bload "prop.lisp") ; Propositional calculus

(bload "pred.lisp") ; Predicate calculus

(bload "equ.lisp")) ; Equality

7 Metatheorems

We establish theorems wholesale, by arguments which show that
the appropriate sequences could be found for each particular case.
Such principles, describing general circumstances under which
statements are theorems, will be called metatheorems.

W. V. Quine[2]

A metatheorem is then, effectively, an algorithm for generating theo-
rems. In Bourbaki a (Lisp) function returning theorems as values is called a
metatheorem.

Bourbaki contains some tools for making writing metatheorems easier.

7.1 Copying Theorems

The macro ‘copy-th’ creates a new theorem context like ‘th’. Unlike ‘th’
it copies the hypotheses, variables and distinct variable conditions from an
existing theorem as specified.

Macro ‘var’ is used to add a single new variable to the end of a theorem’s
variable list.

Function ‘mkvarlist’ is useful when referring to the copied theorem in a
proof.

7.2 Pattern matching

Bourbaki ”borrows” a pattern matching facility from Paul Graham’s On
Lisp[3], slightly modified. An expression

17

(if-match ("->" x y) tree

(do-something x y)

(do-something-else))

checks that tree begins with the symbol →. If this is the case, do-
something is called with x and y bound to the corresponding subtrees of
tree. Otherwise do-something-else is called.

7.3 The metatheorem macro

The macro ‘metatheorem’ creates a wrapper around a function taking a single
theorem as argument and returning another theorem. The resulting theorem
can easily be used from proofs. Additionally, the results are memoized so
that the same theorem is returned each time when called with the same
argument.

A simple example using most of these features follows. Here a new feature
of the [] syntax is used: forms beginning with ‘(’ or ‘,’ are given to the Lisp
reader:

;;; Most of Metamath’s "-i" theorems can be replaced with this

;;; Takes a theorem of the form h_i => [-> a b]

;;; Returns the theorem h_i, a => b

;;; "i" is appended to the argument theorem’s name

(metatheorem infer (thr)

;; Make sure "->" refers to the correct symbol

(in-context !!logic

;; Try to match thr’s assertion

(if-match ("->" x y) (context-assert thr)

;; Copy hypotheses, variables and distinct

;; variable conditions from thr

(copy-th thr "i" (hypo vars distinct)

;; Add a new hypothesis

(hypo x)

(ass y)

(proof

;; refer to the original theorem

‘(,thr ,@(mkvarlist (context-vars thr)))

[ax-mp ,x ,y]))

18

;; Otherwise go to debugger

(error "infer: incorrect theorem form"))))

;;; A shorter proof of "id" using infer

(th "id" (pr "phi")

(ass [-> phi phi])

(proof

[ax1 [phi] [-> phi phi]]

[(infer !ax2) [phi] [-> phi phi] [phi]]

[ax1 [phi] [phi]]

[ax-mp [-> phi -> phi phi] [-> phi phi]]))

7.4 Possibilities

• The (weak) Deduction Theorem

• Equality theorems of the form [→ = x y ↔ φ(x) φ(y)] for general φ.

• Algebraic identities, integral formulae, . . .

• Metatheorems are to Bourbaki what macros are to Lisp

8 The Bourbaki Library

At the moment only a dozen of theorems in ”prop.lisp” (propositional calcu-
lus) are in version 3.5 format. The files ”pred.lisp” (predicate calculus) and
”equ.lisp” (equality) await conversion. These are more or less directly copied
from set.mm, with some attempt of systematic naming.

In addition, the files ”class.lisp” (class abstraction), ”descr.lisp” (the ι-
descriptor, the empty set, relation between sets and classes), ”pair.lisp” (or-
dered pairs) and ”funct.lisp” (relations and functions) contain the beginnings
of set theory, based on Bernays’ Axiomatic set theory [4]. These also need to
be converted.

References

[1] Norman Megill: Metamath, p. 95 (available from http://metamath.org)

19

[2] Willard Van Orman Quine: Mathematical logic, Harvard University
Press 2003 (revised edition), p. 89

[3] Paul Graham: On Lisp, Prentice Hall 1993, Chapter 18

[4] Paul Bernays: Axiomatic set theory. North-Holland Publishing Com-
pany 1968

20

